

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

(Universidad del Perú, DECANA DE AMÉRICA)

FACULTAD DE INGENIERIA DE SISTEMAS E INFORMATICA Escuela Académico Profesional de Ingeniería de Sistemas

SYLLABO

1. ESPECIFICACIONES GENERALES

Nombre del Curso : Sistemas Inteligentes

Código del Curso : 201 204 Duración del Curso : 17 Semanas

Forma de Dictado : Clases presenciales audiovisuales (teoría) y laboratorio

Horas Semanales : 2

Naturaleza : Electivo

Número de Créditos : 2

Prerrequisitos : 207 008 Inteligencia Artificial

Semestre Académico : 2012 – I

2. SUMILLA (Resumen)

Los Sistemas Inteligentes, conceptos, taxonomía y aplicaciones en la industria y servicios. Conjuntos borrosos, representación y operaciones. Funciones de membrecía. Representación de conceptos con conjuntos borrosos. Relaciones borrosas y su composición. Modificadores lingüísticos. Lógica borrosa. Representación de problemas de la IA mediante algoritmos genéticos y su resolución.

3. OBJETIVO GENERAL

El presente curso extiende y complementa el curso Inteligencia Artificial, presentando los fundamentos, operadores y métodos básicos de dos de los sistemas inteligentes más conocidos, los sistemas basados en lógica borrosa y los basados en algoritmos genéticos. El potencial de aplicación de ambos sistemas es enorme en sectores tales como el industrial, el educativo, el de servicios y, de ciencia y tecnología.

El curso visa introducir los sistemas inteligentes, la representación de problemas y su resolución, dando énfasis al estudio y desarrollo de sistemas de inferencia borrosos y de software para optimización basado en algoritmos genéticos.

OBJETIVOS ESPECÍFICOS

- a) Presentar los fundamentos de los sistemas inteligentes y sus aplicaciones, así como las diferencias respecto de los métodos basados en búsqueda y los sistemas expertos.
- b) Representar conceptos lingüísticos mediante conjuntos borrosos y funciones de pertenencia.
- Representar el conocimiento mediante reglas borrosas usando los formatos Sugeno y Mamdani.
- d) Diseñar y desarrollar sistemas de inferencia borrosa basados en diversos mecanismos de inferencia (formato Sugeno y formato Mamdani)
- e) Representar y resolver problemas de optimización mediante cromosomas y operadores genéticos.
- f) Diseñar y desarrollar software para problemas de optimización que usen la técnica denominada algoritmos genéticos.

4. CONTENIDO ANALÍTICO POR SEMANAS

1º Semana: Introducción a Sistemas Inteligentes - Conceptos Básicos de Conjuntos Borrosos.

- Teoría
- Presentación del curso

Introducción a los Sistemas Inteligentes

Taxonomía de los Sistemas Inteligentes. Comparación entre sistemas operacionales y sistemas inteligentes. Conceptos

Incertidumbre. Incertidumbre estocástica y léxica.

Cuando utilizar tecnología borrosa

Aplicaciones en la industria y servicios

Introducción a los conjuntos borrosos. Comparación entre conjuntos clásicos y borrosos.

Referencias: [1] Capitulo 7, [2] Capitulo 1, [4] Capitulo 1 y 2

2º Semana: Conjuntos Borrosos-Universos de discursos

- Teoría
- Probabilidad y Borrosidad. Funciones de densidad de probabilidad y funciones de pertenencia.
- Representación de los conjuntos borrosos. Introducción a las funciones de pertenencia
- Introducción a los Sistemas de Inferencia Borrosos (SIB)

Definición de universo de discurso. Universos de discurso Discreto y Continuos Propiedades o características de un conjunto borroso:

Soporte, núcleo, altura, punto de cruce. Dominio, normalización y cordialidad. Corte-u y Corte-u fuerte de un CB.

Referencias: [1] Capitulo 7, [2] Capitulo 2, [3] Capitulo 4 y 5. [4] Capitulo 1

Práctica

Caso de aplicación: Selección de jugadores de baloncesto.

3º Semana: Teorema de Representación – Funciones de Membrecía

- Teoría
 - Principio de Incompatibilidad
 - Funciones de Pertenencia:

Definiciones básicas, tipos más usados y sus expresiones matemáticas. Determinación del número de funciones de membrecía. Métodos para determinar la Función de Pertenencia.

Teorema de Representación

Practica

Caso de aplicación: Controlador borroso para una grúa puente.

Referencias: [1] Capítulos 7, [2] Capitulo 3, [3], [4] Capitulo 4.

4º Semana: Operaciones básicas con conjuntos borrosos

Teoría

Unión, intersección, complemento, negación de conjuntos borrosos.

• t-normas y s-normas

Definición de t-norma, t-normas más usadas. Definición de s-normas, s-normas más usadas. Ejemplos de aplicación de t-normas y de s-normas. Negaciones involutivas y no involutivas.

Medidas borrosas

Distancia entre conjuntos borrosos. Comparación de conjuntos borrosos (Posibilidad, Necesidad, Compatibilidad)

Practica

Ejercicios sobre Operaciones borrosas

Referencias: [1] Capítulos 7, [2] Capitulo 2, [3] Capítulos 4 y 5, [4] Capitulo 1

5º Semana: Principio de extensión – Relaciones borrosas y su composición

Teoría

Principio de extensión Producto y co-producto cartesiano de conjuntos borrosos Relaciones borrosas Composición de relaciones borrosas

Composición Sup-Star. Composición Inf-Star. Ejemplos de aplicación.

Practica

Ejercicios sobre relaciones borrosas y sobre composición de relaciones borrosas.

Referencias: [1] Capitulo 7, [2], [3], [4] Capítulo 3.

6º Semana: Variables Lingüísticas - Modificaciones Lingüísticas

- Variables lingüísticas, Definición
- Modificaciones lingüísticas

Operaciones de concentración y dilatación de CBs, intensificación del contraste, difuminación del contraste.

• Control de lectura 1

Practica

Ejercicios sobre modificaciones lingüísticos.

Referencias: [1] Capítulo 7, [2], [3]

7º Semana: Diseño de un Controlador Difuso para una Maquina Lavadora

Laboratorio

Diseñar el controlador borroso de una maquina lavadora que proporcione el tiempo de lavado correcto aunque no se tena disponible un modelo preciso de la relación entrada/salida del sistema.

8º Semana

EXAMEN PARCIAL

9º Semana: Arquitecturas Inferencia borrosa

- Teoría
- Lógica borrosa

Fundamentos. Comparación con la lógica tradicional.

Modus Ponens Generalizado y Modus Tollens Generalizado

• Representación del conocimiento mediante reglas borrosas

Reglas borrosas: Formato general, formato tipo Sugeno y formato tipo Mamdani.

• Implicación borrosa

Referencias: [1] Capitulo 7, [2], [3], [4]

Practica

10º Semana: Sistema de inferencia borrosa

- Teoría
 - Definición de un Sistema de Inferencia borrosa (SIB)
 - Normalización y borrosificación de las entradas.
 - Etapas de la inferencia borrosa: agregación y composición
 - Modulo de inferencia borrosa

Inferencia en sistemas Sugeno. Inferencia en sistemas Mamdani

• Desborrosificación de las salidas del sistema.

Conceptos y métodos.

Referencias: [1] Capitulo 7. [2], [3], [4], Capítulos 5 y 6

Practica

Laboratorio

Practica calificada de laboratorio

11º Semana: Desarrollo de un Controlador borroso para una grúa

• Práctica Laboratorio

Diseño y desarrollo de un controlador borroso de una grúa puente para contenedores. Se presentara el algoritmo básico del controlador borroso. Se desarrollaran las etapas de borrosificación de las entradas, procesamiento borroso y Desborrosificación de las salidas. Se utilizará para esta sesión el software llamado fuzzy Tech versión 5.54

Referencias: [1] Capitulo 8, [2], [3].

12º Semana: Introducción a algoritmos evolutivos

- Teoría
 - Repaso de resolución de problemas de búsqueda. Introducción a las Metaheuristicas.
 - Evolución natural y artificial
 - Algoritmos evolutivos

Definición y paradigmas. Comparación entre algoritmos evolutivos. Comportamiento de los algoritmos evolutivos.

• Estrategias Evolutivas

Practica

Caso de aplicación: optimización de una función matemática.

Referencias: [5] capítulos 8 y 13, [6]

13º Semana: Algoritmos genéticos

Teoría

Introducción a los algoritmos genéticos

Algoritmo básico. Comparación con técnicas tradicionales. Caracterización de los AG. Parámetros de los Algoritmos genéticos.

- Representación cromosomática
 - o Representación binaria, con números reales.
- Evaluación y selección de los individuos
 - o Método de selección más usado con énfasis en el método de la ruleta.
- Operadores genéticos:
 - o Crossover: definición, métodos de crossover. Mutación: definición, métodos de mutación.
- Herramientas computacionales para algoritmos genéticos

Practica

Caso de aplicación: Optimización de inversiones mediante AGs.

Referencias: [5] Capítulos 1-3, [6]

14º Semana: Algoritmos Genéticos continuación

Teoría

- Métodos de selección del torneo.
- Operadores especiales para crossover y mutación
- Ajuste de parámetros de los algoritmos genéticos
- Control de lectura nro 2

Practica

Caso de aplicación: Optimización de cultivos mediante AGs.

15º Semana: Exposición de trabajos computacionales

Práctica

Presentación de trabajos computacionales.

16º Semana: Exposición de trabajos computacionales continuación.

EXAMEN FINAL

17° Semana

EXAMEN SUSTITUTORIO

6. METODOLOGÍA

El curso se desarrolla a través de actividades teórico –practicas, dando énfasis a aplicaciones en la industria y servicios. Los estudiantes, organizados en grupos de 2 o 3 estudiantes, desarrollaran un trabajo computacional.

7. EVALUACIÓN

El promedio final (PF) se determina de la forma siguiente:

PF=0.05(CL1 +CL2) + 0.20*TC + 0.35*EP +0.35*EF

Donde:

CL1, CL2: Controles de lectura

TC: Trabajo computacional (Sistemas de inferencia borroso o Algoritmo genético)

EP: Examen parcial EF: Examen final

8. BIBLIOGRAFÍA

[1] BONIFACIO MARTIN SANZ ALFREDO

2002 Redes Neuronales y Sistemas Difusos. Ed. Alfaomega ISBN 84-7897-466-0

[2] KLIR, J.; YUAN, BO

 $1995\ Fuzzy\ Sets$ and Fuzzy Logic: Theory and Applications. Ed. Prentice Hall ISBN 0131011715

[3] COX, EARL

1994 The Fuzzy Systems Handbook. Ed Ap Professional ISBN 0121942708

[4] SIVANANDAM, S.; SUMATHI, S.; DEEPA, S.

2007 Introduction a Fuzzy Logic using MATLAB. Ed. Springer ISBN 103-540-35780-3

[5] MICHALEWICZ ZBIGNIEW

1996 Genetic Algorithms+Data Structures=Evolution Programs. 3ra Ed. Ed Springer

ISBN 3-540-60676-9

[6] WHITLEY DARRELL

2001 An Overview of Evolutionary Algorithms
Journal of Information and Software Technology.43:817-831

Las lecturas obligatorias serán proporcionadas por el profesor del curso.